Zeitmuster in der Evolution der Säugetiere und ihrer Vorläufer

Jahrbuch für Goetheanismus 2008, 2008, P.41-80 | DOI: 10.18756/jfg.2008.41

Abstract:

Temporal pattern in the evolution of mammals and their ancestors

The fundamental threefold shape of the vertebrates, namely head, trunk and limbs, had formed by the Upper Carboniferous period, primarily in water. After this, in the Permian and Mesozoic periods, the development of the threefolding of organs and parts of the body came with the complete move onto land of the Synapsida. This involved the head, the limbs, the hand (together with the arm) and the foot, by evolving, for instance, the secondary palate, the middle eat and the brain case. In contrast to the development in water, the innovations during this time were not completely new organs or bones, but predominantly separation of functions that developed as long term trends. The sequence of separation of functions develops from the distal to the proximal part of the head, the limbs, and hands and feet. Firstly the region of direct contact with the surroundings develops, the limb pole, then the rhythmic region and finally the region of control faculties, the nerve pole. The organs and other parts of the body thus become more independent of one another, while the whole organism acquires autonomy in relation to its surroundings. The various trends evolve in more or less close connection with the development of endothermy (warmbloodness) that accompanies the whole process. With some trends it can be shown that the function was already established before it came to its full form in the skeleton. Here the form follows the function. As far as the organism is participating in its functions, it is also participating in its evolution.

References

  • ALLIN, E. F. (1975): Evolution of the mammalian middle ear. Journal of Morphology 147: 403-438
  • BENNINGHOFF, A., GOERTTLER, K. (1957): Lehrbuch der Anatomie des Menschen. Erster Band: Allgemeine Anatomie und Bewegungsapparat, 6. Auflage. Urban & Schwarzenberg, München, Berlin, Wien
  • BRINKMAN, D. (1980): The hind limb step cycle of Caiman sclerops and the mechanics of the crocodile tarsus and metatarsus. Canadian journal of Zoology 58: 2187-2200
  • CARROLL, R. L. (1993): Paläontologie und Evolution der Wirbeltiere. Übersetzt und bearbeitet von W. Maier und D. Thies. Georg Thieme Verlag, Stuttgart, New York
  • HILLENIUS, W. J. (1992): The evolution of nasal turbinates and mammalian endothermy. Paleobiology 18(1): 17-29. - (1994): Turbinates in therapsids: evidence for Late Permian origins of mammalian endothermy. Evolution 48(2): 207-229
  • HOPSON, J. A. (1995): Patterns of evolution in the manus and pes of non-mammalian therapsids. Journal of Vertebrate Paleontology 15 (3): 615-639
  • HOPSON, J.A., ROUGIER, G. W (1993): Braincase structure in the oldest known Skull of a therian mammal: implications for mammalian systematics and cranial evolution. American Journal of Science 293 A: 268-299
  • HU, Y., MENG, J., WANG, Y., LI, C. (2005): Large mesozoic mammals fed on young dinosaurs. Nature 433: 149-152
  • JENKINS, F. A. (1971): The postcranial skeleton of African cynodonts. Peabody Museum of Natural History, Yale University, New Haven, Connecticut. Bulletin 36: 1-216
  • JI, Q., LUO, Z. X., JI, S. A. (1999): A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature 398: 326-330
  • JI, Q., LUO, Z. X., YUAN, C. X., WIBLE, J. R., ZHANG, J. P., GEORGI, J. A. (2002): The earliest known eutherian mammal. Nature 416: 816-822
  • KEMP, T. S. (1982): Mammal-like reptiles and the origin of mammals. Academic Press, London, New York - (2005): The origin and evolution of mammals. Oxford University Press
  • KEMPT, T. S. (2005): The origin and evolution of mammals. Oxford University Press
  • KIELAN-JAWOROWSKA, Z., CIFELLI, R. L., LUO, Z. X. (2004): Mammals from the age of dinosaurs. Origins, evolution, and structure. Columbia University Press, New York
  • HURUM, J. H. (2006): Limb posture in early mammals: Sprawling or parasagittal. Acta Palaeontologica Polonica. 51(3): 393-406
  • KÜMMELL, S. (in press): Die Digiti der Synapsida, Anatomie, Evolution und Konstruktionsmorphologie. Dissertation. Martina-Galunder-Verlag, Nümbrecht
  • LUO, Z. X., CROMPTON, A. W, SUN, A. L. (2001): A new mammaliaform from the Early Jurassic and evolution of mammalian characteristics. Science 292: 1535-1540
  • JI, Q., WIBLE, J. R., YUAN, C. (2003): An early Cretaceous tribosphenic mammal and metatherian evolution. Science 302: 1934-1940
  • CHEN, P. J., LI, G., CHEN, M. (2007): A new eutriconodont mammal and evolutionary development in early mammals. Nature 446: 288-293
  • MAIER, W., VAN DEN HEEVER, J., DURAND, F. (1996): New therapsid specimens and the origin of the secondary hard and soft palate of mammals. J. Zoo. Syst. Evol. Research 34: 9-19
  • MAISCH, M. (2005): Mehrfach unabhängige Entstehung des Säugetiermittelohrs? Naturwissenschaftliche Rundschau 58(8): 434-436
  • MARTIN, T., LUO, Z. X. (2005): Homoplasy in the mammalian ear. Science 307: 861-862
  • PAEDE, P. (2001): Der Fuß, die menschlichste Gliedmaße. Tycho de Brahe-Jahrbuch für Goetheanismus 2001, S. 296-314. Niefern-Öschelbronn
  • RICH, T. H., HOPSON, J., MUSSER, A. M., FLANNERY, T. F., VICKERS-RICH, P. (2005): Independent origins of middle eat bones in monotremes and therians. Science 307: 910-914
  • ROHEN, J. W. (2000): Morphologie des menschlichen Organismus. Verlag Freies Geistesleben, Stuttgart
  • ROSSLENBROICH, B. (2007): Autonomiezunahme als Modus der Makroevolution. Martina-Galunder-Verlag, Nümbrecht.
  • ROSSLENBROICH, B. (2008): Gibt es eine Höherentwicklung? Aufgaben einer goetheanistischen Evolutionsbiologie. Teil I: Eine Fragestellung und ihre Geschichte. Teil II: Grundmuster der Evolution. Die Drei 3/2008: 39-58
  • ROWE, T. (1996a): Coevolution of the mammalian middle ear and neocortex. Science 273: 651-654.
  • ROWE, T. (1996b): Brain heterochrony and evolution of the mammalian middle ear. In: Ghiselin, M., Pinna, G. (Eds.), New Perspectives on the History of Life, pp. 71-96. California Academy of Sciences, Memoir 20
  • SCHAD, W. (1971): Säugetiere und Mensch. Zur Gestaltbiologie vom Gesichtspunkt der Dreigliederung. Verlag Freies Geistesleben, Stuttgart.
  • SCHAD, W. (1992): Der Heterochronie-Modus in der Evolution der Wirbeltierklassen und Hominiden. Unveröffentlichte Dissertation der Universität Witten/Herdecke, Witten
  • SERENO, P. C. (2006): Shoulder girdle and forelimb in multituberculates: evolution of parasagittal forelimb posture in mammals. In: Carrano, M. T., Gaudin, T. J., Blob, R. W, Wible, J. R., Amniote paleobiology. Perspectives on the evolution of mammals, birds, and reptiles, pp. 315-366. The University of Chicago Press, Chicago, London
  • SIDOR, G. A. (2003): Evolutionary trends and the origin of the mammalian lower jaw. Paleobiology 29(4): 605-640
  • STARCK, D. (1979): Vergleichende Anatomie der Wirbeltiere, auf evolutionsbiologischer Grundlage, Bd. 2: Das Skeletsystem. Allgemeines, Skeletsubstanzen, Skelet der Wirbeltiere einschließlich Lokomotionstypen. Springer-Verlag, Berlin, Heidelberg, New York
  • SUCHANTKE, A. (2002): Metamorphose. Kunstgriff der Evolution. Verlag Freies Geistesleben, Stuttgart
  • SUMIDA, S. S. (1997): Locomotor features of taxa spanning the origin of amniotes. In: Sumida, S. S., Martin, K. L.: Amniote origins, pp. 353-398. Academic Press, San Diego, London, Boston
  • SZALAY, F. S. (1993): Pedal evolution of mammals in the Mesozoic: Tests for taxic relationships. In: Szalay, F. S., Novacek, M. J., McKenna, M. C., pp. 108-128: Mammal phylogeny
  • THULBORN, T., TURNER, S. (2003): The last dicynodont: an Australian Cretaceous relict. Proceedings of the Royal Society of London B 270: 985-993
  • WIBLE, J. R., HOPSON, J. A. (1993): Basicranial evidence for early mammal phylogeny. In: Szalay, F. S., Novacek, M. J., McKenna, M. C., Mammal phylogeny. Mesozoic differentiation, multituberculates, monotremes early therians, and marsupials. Springer-Verlag, New York, Berlin, Heidelberg