Knochenbildung in Wechselwirkung mit der Atmung bei Süßwasser-Schildkröten

Jahrbuch für Goetheanismus 2011, 2011, P.25-90 | DOI: 10.18756/jfg.2011.25

Abstract:

Through the. specific anatomy of their lungs enclosed in the shell, the rhythtmic system of turtles is less autonomous than in other reptiles, higher animals or the human being. This correlates with an openness to the influences of annual rhythms in the environment. Such openness is at its most extreme in the North American Freshwater turtles, which interrupt their lung breathing and switch to an oxygen-independent metabolism. This produces lactic acid which increasingly over-acidifies the organism. This is however counteracted by the shell (carapace, plastron) and skeletal mineral, 'breathing out' through the release of, above all, hydrogen carbonate ('labile carbonate', HCO3‘). In contrast, in the summer, when the lung is active and the organism becomes stroneg alkaline, the mineral phase increasingly takes up HCO3' from the blood, 'breathing in'. In this way, lung function is transferred from the central, rhythmic system to the metabolic-limb-shell system as a 'metaholic breathing' ('bone breathing‘). As part of the lesser emancipation of the rhythmic system, breathing processes are carried on with the participation of hydrogen carbonate metabolism in various ways and with different organs (lung, skin and mucosa, liver, kidney, shell and skeleton) as 'multi-organ breathing'. The mineralised shell of the turtle, like the oyster shell described by Rudolf Steiner, is an expression of the larger excarnated 'outer soul ' of this animal. Whilst it gives it a remarkable vitality, it prevents the development of greater behavioural diversity and consciousness. When human beings acquire such shell-forming, mineralising capacities in their lungs, they become ill (eg. tuberculosis). According to Rudolf Steiner, the Iungs inside the human being regulate an 'earth-forming process'. This is interpreted in the following way: As long as the lungs are kept free from mineralising forces, the human being can free his soul life from his body and be freely spiritually active. His individual ‘earth forming process' comprises his healthy incarnation on the earth. The lungs interact with bone mineral, in freshwater turtles mainly with the mineralised shell: with cessation of lung function in winter the shell and bone mineral mainly release calcium, together with hydrogen carbonate, into the blood (demineralisation). In contrast, in summer, when the lungs are functioning, hydrogen carbonate is taken up from the blood, and with it certainly calcium (mineralisation). Less pronounced processes of this kind also occur in the skeleton of patients with acidosis or alkalosis. Whereas extreme acidosis or alkalosis is highly pathological or lethal for humans, both conditions belong to the normal life of the freshwater turtles, in accordance with the seasonal rhythms of their biotopes.

References

  • APELT, H.-J. (2006): Wissenswertes über Schildkröten. Anatomie, Biologie und klinische Untersuchung. Ver-Med Report 30, Sonderausgabe V8: 14 (im Internet frei verfügbar)
  • ARNOLD, J. S. (1964): The quantitation of bone mineralization as an organ and tissue in osteoporosis. In: Pearson, O. H. & joplin, G. F. (Eds.), Dynamic Studies of Metabolic Bone Disease. Chapter TV, pp. 59-76. Oxford
  • ARP, G. (2006): Field trip F2: Sediments of the Ries Crater Lake (Miocene, Southern Germany). Sediment 2006 — 21St Meeting of Sedimentologists / 4"‘ Meeting of SEPM Central European Section: 213-236
  • BARTTER, F. C. (1964): Disturbances of phosphorus metabolism. In: Comar, C. L. & Bronner, F., Mineral Metabolism, an Advanced Treatise, Vol. 2(A), pp. 315-339. New York, Londo
  • BILTZ, R. M., PELLEGRINO, E. D. (1969): The chemical anatomy of bone. I. A comparative study of bone composition in sixteen vertebrates. Journal of Bone and joint Surgery 51a: 456-466
  • BRETTSCHNEIDER, H. (1994): Zur Physiognomie der Tuberkulose. Tycho de Brahe-Jahrbuch für Goethanismus 1994: 178-212. Niefern-Öschelbronn
  • BRETTSCHNEIDER, H. (2000): Anthroposophische Medizin. Jahrbuch für Goetheanismus 2009: 139-224. Niefern-Öschelbronn
  • BURNELL‚ J. M.,TEUBNER, E. (1971): Changes in bone sodium and carbonate in metabolic acidosis and alkalosis in the dog. The journal of Clinical Investigation 50: 327-331
  • BUSHINSKY, D. A. (1996): Metabolic alkalosis decreases bone calcium efflux by suppressing ostcoclasts and stirnulating osteoblasts. American joumal of Physiology — Renal Physiology 271: F216-F222
  • BUSHINSKY, D. A., SMITH, S. B., GAVRILOV, K. L. & al. (2002): Acute acidosis—induced alteration in bone bicarbonate and phosphatc. American journal of Physiology — Renal Physiology 283: F1091-F1097
  • DORNBLÜTH, O. (1927): Klinisches Wörterbuch, 13/14. Auflage (ab 19. Auflage als »Pschyrembel« bekannt, durch W. Pschyrembel herausgegeben).
  • ERNST, C. H., LOVICH, J. E. (2009): Turtles of the United States and Canada. Baltimore
  • FREEMAN, F. H., FENN, W. O. (1953): Changes in carbon dioxide stores of rats due to atmospheres low in oxygen or high in carbon dioxide. American journal of Physiology 174: 422-430
  • FRÖHLICH, F. (1995): Wunderschöne Schmuckschildkröten. Stuttgart
  • GANS, C., HUGHES, G. M. (1967): The mechanism of lung ventilation in the tortoise Testudo graeca Linné. journal of Experimental Biology 47: 1-20
  • GEHLIG, R. (2008): Lebendige Mineralwelt in Knochen. Jahrbuch für Goetheanismus 2008/2009: 145-193. Niefern-Öschelbronn
  • GRZIMEK, B. (1980): Grzimeks Tierleben. Enzyklopädie des Tierreichs, Bd. 4 und 5 (Fische). Unveränderter Nachdruck der 1975-1977 im Kindler Verlag erschienenen Ausgabe. München
  • HUGGINS, C. (1937): The composition of bone and the function of the bone cell. Physiological Reviews 17: 119-143
  • HERBERT, C. V., JACKSON, D. C. (1985): Temperature effects on the responses to prolonged submergence in the turtle Chrysemys picta hell/i. II. Metabolic rate, blood acid—base and ionic changes, and cardiovascular function in aerated and anoxic water. Physiol. Zool. 5 8(6): 670-681
  • HÜTTNER, R., SCHMIDT-KALER, H. (2003): Wanderungen in die Erdgeschichte (10), Meteoritenkrater Nördlinger Ries. 2. Aufl., München
  • JACKSON, D. C. (1986): Acidpbase regulation in reptiles. In: Heisler, N. (Ed.), Acid—Base Regulation in Animals. Chapter 7, pp. 235-263. Amsterdam,
  • JACKSON, D. C. (2002): Hibernating without oxygen: physiological adaptations of the painted turtle. Journal of Physiology 543(3): 731-737
  • JACKSON, D. C. (2004): Acid—base balance during hypoxic hypometabolism: selected vertebrate strategies. Respiratory Physiology & Neurobiology 141; 273-283
  • JACKSON, D. C. GOLDBERGER, Z., VISURI, S., ARMSTRONG, R. N. (1999): Ionic exchanges of turtle shell in vitro and their relevance to shell function in the anoxic turtle. The journal of Experimental Biology 202: 513-520
  • JACKSON, D. C., SILVERBLATT, H. (1974): Respiration and acid-base status of turtles following experimental divcs. American journal of Physiology 226(4): 903-909
  • JACKSON, D. C., ULTSCH, G. R. (1982): Long-term submergence at 3°C of the turtle Chrysemys picta belii, in normoxic and severely hypoxic water: II. Extracellular ionic responses to extreme lactic acidosis. journal of Experimental Biology 96: 29-43
  • JACKSON, D. C., CROCKER, C. E., ULTSCH, G. R. (2000): Bone and shell contribution to lactic and buffering of submerged turtles Chrysemys picta belii at 3°C. American journal of Physiology Regulatory Integrative Comparative Physiology 278: R1564-R1571
  • JACKSON, D. C., TAYLOR, S. E., ASARE, V. S. & al. (2007): Comparative shell buffering properties correlate with anoxia tolerance in freshwater turtles. American journal of Physiology Regulatory Integrative Comparative Physiology 292: R1008-R1015
  • JOWSEY, J. (1963): Microradiography of bone resorption. In: Sognnaes, R. F. (Ed.), Mechanisms of Hard Tissue Destruction: 447-469. Publication No. 75 of the American Association for the Advancement of Science. Washington, D. C.
  • JOWSEY, J. (1964): Variations in bone mineralization with age and disease. In: Frost, H. M. (Ed.), Bone Biodynamics, pp. 461-478. Henry Ford Hospital International Symposium. Boston, Mass.
  • JOYCE, W. G., SPENCER, G. L., SCHEYER, T. M. & al. (2009): A thin—shelled reptile from the Late Triassic of North America and the origin of the turtle shell. Proceedings of the Royal Society B 2761 507-513
  • LATUSSEK, R. H. (2008): Wie Schildkröten zu ihrem Panzer kamen. Internet: http://www.welt.de/wissenschafr/articleZ78593S/Wie-Schildkroeten-zu-ihrem-Panzer-kamen.html
  • LI, C., WU, X.-C.‚ RIEPPEL, O. & al. (2008): An ancestral turtle from the Late Triassic of south-western China. Nature 456: 497-501
  • LONG‚ C., KING, E. J., SPERRY‚ W. M. (1968): The chemical composition of bone. In: Biochemist’s Handbook, pp. 715-720. London
  • MAISCH, M. (2009): Trias—Schildkröten aus China und New Mexico. Naturwissenschaftliche Rundschau 62(4): 199-201
  • MAREK, J.‚ WELLMANN, O., URÁNYI‚ L. (1934): Chemischer Aufbau der Knochensalze bei gesunden und bei rachitischen Tieren. Hoppe-Seyler’s Zeitschrift für physiologische Chemie 226: 3-17
  • MCSHERRY, E. (1978): Acidosis and growth in nonuremic renal disease. Kidney International 14: 349-354
  • MORGULIS, S., JANECEK, E. (1931): Studies on the chemical composition of bone ash. Journal of Biological Chemistry 93: 455-466
  • NIZAMI, M. A. F., GERNTHOLTZ, T.‚ SWANEPOEL, C. R. (2000): The role of bone scanning in the detection of metastatic calcification. A case report. Clinical Nuclear Medicine 25: 407-409
  • O’MALLEY, B. (2008): Klinische Anatomie und Physiologie bei kleinen Heimtieren, Vögeln, Reptilien und Amphibien. München, Jena
  • PELLEGRINO, E. D.. BLITZ, R. M. (1965): The composition of bone in urcmia. Observations on the resewoir functions of bone and demonstration of a labile fraction of bone carbonate. Medicine 44: 397-418
  • PELLEGRINO, E. D.. BLITZ, R. M. (1968): Bone carbonate and the Ca to P molar ratio. Nature 12: 1261-1262
  • PELLEGRINO, E. D.. BLITZ, R. M., LETTERI, J. M. (1977): Interrelationships of carhonate, phosphate, monohydrogen phosphate, calcium, magnesium and sodium in uraemic bone: comparison of dialyzed and non—dialyzed patients. Clinical Science and Molecular Medicine 53: 307-316
  • PIA, . (1933): Kohlensäure und Kalk. Einführung in das Verständnis ihres Verhaltens in den Binnengewässern. Stuttgart
  • PSCHYREMBEL, W. (Hrsg.) (1994): Medizinisches Wörterbuch. 257. Aufl. Hamburg
  • RAHN, H., GAREY, W. F. (1973): Arterial COZ, OZ, pH and 1 ICO3' values of ectotherms living in the Amazon. American journal of Physiology 225 (3): 735-738
  • REESE, S. A., ULTSCH, G. R., JACKSON, D. C. (2004): Lactate accumulation, glycogen depletion, and shell composition of hatchling turtles during simulated aquatic hibernation. journal of Experimental Biology 207: 2889-2895
  • REY, C., LIAN, J., GRYNPAS, M. & al. (1989): Non-apatitic environments in bone mineral: FT-IR detection, biological properties and Changes in several disease states. Connective Tissue Research 21: 267-273
  • REISZ, R. R., HEAD, J. J. (2008): Palaeontology: turtle origins out to sea. Nature 456: 450-451
  • RIEPPEL, O., REISZ, R. R. (1999): The origin and early evolution of turtles. Annual Review of Ecology, Evolution, and Systematics 30: 1-22
  • ROBIN, E. D., LEWISTON, N., NEWMAN, A. & al. (1979): Bioenergetic pattern of turtle brain and resistance to profound loss of mitochondrial ATP generation. Proceedings of the National Academy of Sciences USA 76(8): 3922-3926
  • ROBIN, E. D., VESTER, J. W., MURDAUGH, H. V., MILLEN, J. E. (1964): Prolonged anaerobiosis in a vertebrate: anaerobic metabolism in the freshwater turtle. Journal of Cellular and Comparative Physiology 63: 287-397
  • ROSSLENBROICH, B. (2006): Zur Autonomieentstehung in der Evolution — Eine Übersicht. Tycho de Brahe-Jahrbuch für Goetheanismus 2006: 157-200. Niefern-Öschelbronn
  • RUEGSEGGER, P., KOLLER, B., MÜLLER, R. (1996): A microtomographic system for the nondestructive evaluation of bone architecture. Calcified Tissue International 58: 24-29
  • SANDER, M. (1994): Reptilien. 220 Einzeldarstellungen. Haeckel-Bücherei Bd. 3, hrsg. von H. K. Erben, G. Hillmer und H. Ristedt. Stuttgart
  • SCHAD, W. (1971): Säugetiere und Mensch. Zur Gestaltbiologie vom Gesichtspunkt der Dreigliederung. Stuttgart. (Stark erweiterte Neuauflage im Druck)
  • SCHEYER, T. M., SANDER, P. M. (2007): Shell bone histology indicates terrestrial palaeoecology of basal turtles. Proceedings of the Royal Society B 274: 1885-1893
  • SCHMIDT, R. F., THEWS, G. (1987): Physiologie des Menschen, 23. Aufl. Berlin, Heidelberg, New York u. a.
  • SIMKISS, K. (1968): Calcium and earbonate metabolism in the frog (Rana temporaria) during respiratory acidosis. American Journal of Physiology 214(3): 627-634
  • SPECTOR, W. S. (1956): Handbook of Biological Data, p. 73. London
  • STEINER, R. (1920a): Geisteswissenschaft und Medizin (GA 312), 11. Vortrag (31.3.1920). Dornach (1976)
  • STEINER, R. (1920b): Geisteswissenschaft und Medizin (GA 312), 5. Vortrag (25.3.1920). Dornach (1976)
  • STEINER, R. (1920c): Geisteswissensehaft und Medizin (GA 312), 19. Vortrag (8.4.1920). Dornach (1976)
  • STICH, P. (1988): Offenheit und Abgrenzung in Gestalt und Tätigkeit der Niere. Tycho de Brahe-Jahrbueh für Goetheanismus 198 8: 110-139
  • UCHIDA, M., SAKEMI, T., IKEDA, Y., MAEDA,T. (1995): Acute progressive and extensive metastatic ealcifications in a nephrotic patient following chronic hemodialysis. American journal of Nephrology 15: 427-430
  • ULTSCH, G. R. (1989): Ecology and physiology of hibernation and overwintering among freshwater fishes, turtles, and snakes. Biological Reviews 64: 435-516
  • ULTSCH, G. R., JACKSON, D. C. (1982a): Long—term submergence at 3°C of the turtle Chrysemys picta bellii in normoxic and severer hypoxic water. I. Survival, gas exchange and acid—base status. Journal of Experimental Biology 96: 11-28
  • ULTSCH, G. R., JACKSON, D. C. (1982b): Long—term submergence at 3°(3 of the turtle Chrysemys picta bellii in normoxic and severely hypoxic water. III. Effects of cl‘1anges in ambient POZ and subsequent air breathing. Journal of Experimental Biology 97: 87-99
  • ULTSCH, G. R., CARWILE, M. E., CROCKER, C. E. & al. (1999): The physiology of hibernation among painted turtles: the eastern painted turtle Chrysemys picta picta. Physiological and Biochemieal Zoology 72: 493-501
  • WARREN, D. E., JACKSON, D. C. (2005): The role of mineralized tissue in the buffering of lactic acid during anoxia and exercise in the leopard frog Rana pipiens. The journal of Experimental Biology 208: 1117-1124
  • WIKIPEDIA: Die Freie Online—Enzyklopädie. www.wikipedia.de
  • WILKE‚ H. (2006): Schildkröten, faszinierend & vital, 4. Aufl. München